Shear reinforcement, Transverse reinforcement, Stirrups, Ties, Confinement zone, Middle region, Concrete shear contribution, Shear capacity, Maximum spacing limits, Minimum reinforcement ratio, Normal ductility, Two-legged stirrups, Effective depth, Axial load effect, Beam-column joint, C25-S420 materials, Rectangular column, Vd (design shear force), Vc (concrete contribution), Vs (stirrup contribution), Asw (stirrup area), Spacing calculation, Zone length

Column Shear Reinforcement Design

Column Shear Reinforcement Design
Reinforced Concrete Design – Shear Reinforcement

Column Shear Reinforcement Design

Transverse Reinforcement for Confinement and Middle Zones – C25-S420

Example Problem

For a column with C25-S420 materials and cross-section (300/500) mm, subjected to an axial load Nd = 540 kN and shear force Vd = 350 kN, calculate the transverse reinforcement (stirrup) spacing for confinement and middle zones according to normal ductility requirements.

Given: Longitudinal reinforcement diameter Ø16, Stirrup diameter Ø8

Column Cross-Section

b: 500 h: 300 d’: 20 d: 480 Nd depth from edge ● Ø16 Longitudinal bars

Given Information

ParameterValue
Column dimensionsb = 500 mm, h = 300 mm
MaterialsC25-S420 (fcd = 16.67 MPa ≈ 17 MPa, fyd = 365 MPa, fctd = 1.15 MPa)
Design axial forceNd = 540 kN
Design shear forceVd = 350 kN
Longitudinal reinforcementØ16 bars
Stirrup diameterØ8
Effective depthd = 480 mm (from calculation)
Ductility levelNormal

SOLUTION – Shear Reinforcement Design

Step 1

Check Maximum Shear Force Capacity

Vd ≤ 0.22 Ac fcd

350 × 10³ ≤ 0.22 × 300 × 500 × 17

350 × 10³ ≤ 561 × 10³ N

350 < 561 kN ✓
Result: Section is adequate for shear (adequate in section, column section shear strength is satisfied).
Step 2

Calculate Concrete Shear Contribution

Vd ≤ Vcr

Vcr = 0.65 fctd b d (1 + 0.07 Nd/Ac)

Vcr = 0.65 × 1.15 × 300 × 480 (1 + 0.07 × 540×10³/(300×500))

Vcr = 0.65 × 1.15 × 300 × 480 (1 + 0.07 × 3.6)

Vcr = 107,640 (1 + 0.252)

Vcr = 107,640 × 1.252 = 134,765.3 N ≈ 134.765 kN
Note: The axial load increases the concrete’s shear resistance through the [1 + 0.07(Nd/Ac)] factor. Here it provides a 25.2% increase.

Since Vd = 350 kN > Vcr = 134.765 kN, shear reinforcement is required.

Stirrup area (two-legged Ø8):
Asw = n × (πز/4) = 2 × (π × 8²/4)

Asw = 2 × 50.27 = 100.48 mm²
Step 3

Calculate Required Stirrup Contribution

Concrete contribution (normal ductility):

Vc = 0.8 Vcr

Vc = 0.8 × 134.765 = 107.812 kN

Required stirrup contribution:

Vs = Vd – Vc

Vs = 350 – 107.812 = 242.2 kN

CONFINEMENT ZONE (Sarılma Bölgesi)

Step 4

Calculate Stirrup Spacing from Shear Requirements

s = (Asw × fywd × d) / Vs

s = (100.48 × 365 × 480) / (242.2 × 10³)

s = 17,604,096 / 242,200

s = 72.68 mm
Step 5

Apply Maximum Spacing Limits for Confinement Zone

Maximum Spacing Requirements:

sc ≤ min {
  b/3 = 300/3 = 100 mm
  8Ølong = 8 × 16 = 128 mm
  150 mm
}

Therefore: sc ≤ 100 mm

Selected sc = 75 mm
Decision: Although calculations give 72.68 mm, we select practical value of 75 mm (divisible by 5).
Step 6

Check Minimum Reinforcement Requirement – Confinement Zone

Asw/sc ≥ 0.3 (fcd/fywd) b (minimum condition)

100.48/75 ≥ 0.3 × (17/365) × 300

1.34 ≥ 0.3 × 0.0466 × 300

1.34 > 0.28 ✓
Confinement zone design: Ø8 @ 75 mm

MIDDLE REGION (Orta Bölge)

Step 7

Apply Maximum Spacing Limits for Middle Region

Maximum Spacing Requirements:

so ≤ min {
  b/2 = 300/2 = 150 mm
  12Ølong = 12 × 16 = 192 mm
  200 mm
}

Therefore: so ≤ 150 mm

Selected so = 150 mm
Step 8

Check Minimum Reinforcement Requirement – Middle Region

Asw/so ≥ 0.3 (fcd/fywd) b (minimum condition)

100.48/150 ≥ 0.3 × (17/365) × 300

0.67 ≥ 0.28

0.67 > 0.28 ✓
Middle region design: Ø8 @ 150 mm

Design Summary

Final Stirrup Arrangement

Confinement Zone Ø8 @ 75 mm Confinement Zone Ø8 @ 75 mm Middle Region Ø8 @ 150 mm ~80 mm zone ~80 mm zone
ParameterValueStatus
Maximum shear capacity check350 kN < 561 kN✓ Adequate
Concrete cracking force (Vcr)134.765 kNWith axial load effect
Concrete contribution (Vc)107.812 kN= 0.8 Vcr
Required stirrup contribution (Vs)242.2 kN= Vd – Vc
Stirrup area (Asw)100.48 mm²Two-legged Ø8
Calculated spacing from shear72.68 mmBase calculation
Confinement zone spacingsc = 75 mm✓ Final (Ø8/75)
Confinement zone – Min. requirement1.34 > 0.28✓ Satisfied
Middle region spacingso = 150 mm✓ Final (Ø8/150)
Middle region – Min. requirement0.67 > 0.28✓ Satisfied

Key Design Insights

  1. Two different zones: Confinement zones (near beam-column joints) require tighter stirrup spacing (75mm) than middle region (150mm).
  2. Axial load benefit: The 540 kN axial load increases concrete shear capacity by 25.2% through the [1 + 0.07(Nd/Ac)] factor.
  3. Shear governs spacing: Calculated spacing from shear (72.68 mm) is more critical than code maximum limits (100 mm for confinement zone).
  4. Minimum reinforcement: Both zones satisfy the minimum Asw/s requirement (1.34 > 0.28 and 0.67 > 0.28).
  5. Practical spacing: Selected 75 mm and 150 mm are practical values divisible by 5 or 10 for construction ease.
  6. Zone lengths: Confinement zones extend approximately 80-100mm from each end (max(b/3, 8Ølong, 150mm)).

Final Construction Specifications

COLUMN: 300 mm × 500 mm

Longitudinal Reinforcement: Ø16 bars

Confinement Zone Stirrups: Ø8 @ 75 mm

Middle Region Stirrups: Ø8 @ 150 mm

Materials: C25 Concrete, S420 Steel

Stirrup Type: Two-legged rectangular ties

Ductility Level: Normal

⚠️ Important Construction Notes:
  • Confinement zones (sarılma bölgesi) are critical areas requiring tighter stirrup spacing for enhanced ductility.
  • Stirrup hooks must be 135° with minimum 6d extension (where d = stirrup diameter).
  • Maintain consistent stirrup spacing within each zone – no irregular spacing allowed.
  • All designs must comply with local building codes and be reviewed by a licensed engineer.
  • Consider seismic detailing requirements if the structure is in a seismic zone.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top